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Fig. 1: We present IntenSelect+, an enhanced version of the temporal volume-based selection technique IntenSelect. Unlike its
predecessor (left), IntenSelect+ is not restricted to representing objects as single points and thus always snaps to the closest point of
an object to the selection ray (right). It also comes with an overhauled scoring function, which simplifies per-object parameterization.

Abstract— Object selection in virtual environments is one of the most common and recurring interaction tasks. Therefore, the used
technique can critically influence a system’s overall efficiency and usability. IntenSelect is a scoring-based selection-by-volume
technique that was shown to offer improved selection performance over conventional raycasting in virtual reality. This initial method,
however, is most pronounced for small spherical objects that converge to a point-like appearance only, is challenging to parameterize,
and has inherent limitations in terms of flexibility. We present an enhanced version of IntenSelect called IntenSelect+ designed to
overcome multiple shortcomings of the original IntenSelect approach. In an empirical within-subjects user study with 42 participants,
we compared IntenSelect+ to IntenSelect and conventional raycasting on various complex object configurations motivated by prior work.
In addition to replicating the previously shown benefits of IntenSelect over raycasting, our results demonstrate significant advantages
of IntenSelect+ over IntenSelect regarding selection performance, task load, and user experience. We, therefore, conclude that
IntenSelect+ is a promising enhancement of the original approach that enables faster, more precise, and more comfortable object
selection in immersive virtual environments.

Index Terms—Virtual Reality, 3D User Interfaces, 3D Interaction, Selection, Score-Based Selection, Temporal Selection, IntenSelect.

1 INTRODUCTION

Object selection is a fundamental task of 3D user interaction in virtual
environments that is often the basis for further actions [8, 36]. While
many selection methods exist, such as grasping, surface, indirect, and
bimanual methods [8], pointing metaphors are still one of the most
prominent selection categories. One popular pointing metaphor is the
naïve raycasting method, which can be found in many VR applications.
The precision of raycasting, however, decreases with distance based on
the lever effect, which is particularly problematic for selecting smaller
objects in dense environments. While prior work has presented sev-
eral enhanced techniques to alleviate this issue [1, 22, 26, 31, 41], an
auspicious approach considering the temporal context is IntenSelect,
originally introduced by de Haan et al. in 2005 [12]. In a nutshell,
IntenSelect updates a score for each object based on a scoring func-
tion and then selects the object with the highest score. De Haan et al.
showed that this improves selection stability and usability over ray-
casting and volume selection if parameterized appropriately. However,
the initial design of this technique was optimized for small spherical
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objects that converge to a point-like appearance, thereby limiting the
generalizability of IntenSelect to more complex scenarios. Additionally,
usability was reduced by complex dependencies between parameters
and limited applicability when using per-object parameters.

In this paper, we present an enhanced version of IntenSelect called
IntenSelect+. It enables the intuitive selection of objects, including
complex shapes, using an improved scoring function and more flex-
ible parameterization options on a per-object level. To evaluate our
approach, we conducted a user study with 42 participants that com-
pared IntenSelect+ to IntenSelect and naïve raycasting as baselines. To
facilitate replication and accessibility to this technique, we published
the executable of our user study and the implementation of IntenSelect+
as plugins for the Unreal game engine.

The design of our user study was particularly motivated by the desire
to gain a more detailed understanding of the benefits and drawbacks
of IntenSelect beyond the currently available insights in the literature.
While the use of modern consumer-oriented VR hardware in our work is
one factor contributing to this goal, we additionally focus on the explicit
analysis of different types of object configurations that were previously
shown to be potentially problematic for precise object selection [36].
As a result, this paper addresses the central research question of which
selection technique is most beneficial for performing precise, fast,
and comfortable selections in different object configurations. The
contributions of our work to approach this question can, therefore, be
summarized as follows:

• The introduction of IntenSelect+, an extended and more general
version of IntenSelect that enables the selection of more com-
plex shapes and offers an improved scoring function as well as



additional parameterizations

• Scientific evidence from a user study with 42 participants (i) vali-
dating previously shown benefits of IntenSelect over raycasting
with modern HMD hardware, (ii) confirming that these benefits
can be further strengthened with IntenSelect+, and (iii) providing
guidance on interaction effects between the three techniques and
different object configurations

• An exemplary implementation of IntenSelect+ as an open-source
plugin for Unreal Engine to facilitate further research, develop-
ment, and usage. [5]

Overall, our results encourage the use of IntenSelect+ over IntenSelect
as well as raycasting and motivate future comparisons to alternative
approaches for precise object selection in immersive virtual environ-
ments.

2 BACKGROUND AND RELATED WORK

The selection of objects in 3D environments is a fundamental operation
in virtual and extended environments. Numerous works have investi-
gated accurate and efficient methods, focusing on various challenges
in 3D scenes [24]. Nonetheless, finding new and improved selection
techniques is still an active area of research, including specific chal-
lenges such as selecting text [44] or particle data [46], making use
of additional technology such as eye tracking [39], or harnessing the
support of deep neural networks [25]. While several taxonomies for
the classification of selection techniques exist [7, 33], Argelaguet and
Andujar [3] propose to classify techniques based on the selection tool
and user behavior. As an in-depth discussion of the entire resulting
design space and corresponding prior techniques is beyond the scope
of this work, we refer the reader to further literature [6] and focus
the following overview on ray-based pointing selection for single ob-
jects without changes to the scene, purposefully omitting touch/direct,
grouped, or crossing selection approaches [20] for brevity.

Using a ray from a user’s perspective, e.g., from a hand-held con-
troller or the user’s head or finger, that intersects objects targeted for
selection has established itself as a quick and easy technique early in the
development of virtual reality solutions [28]. However, shortcomings
such as the “Heisenberg effect" [9, 42], i.e., the unintended movement
of an input device when pressing a button, inaccuracy for small, mov-
ing, or distant objects in cluttered scenes [32], or a mismatch between
ray- and gaze position [2] became imminent and required adaptations to
the classic technique. Some examples summarized by Argelaguet and
Andujar [3] propose adapting the classic ray with additional features
such as a ray cast from the eye [4], applying two-handed pointing [29]
or using two rays [43]. Furthermore, objects can be scaled based on
their distance to the selection ray [1, 41], or additional views might
be added [17, 21], allowing for a larger rendering of the objects. An-
other option is to change the selection ray to a volume, such as a
cone [15,26], which improves the selection of small and distant objects
but might require the users to disambiguate objects within the selection
volume [16]. To support this disambiguation, progressive refinement
might be used [22,38], or heuristics may determine the final target [37].
In 2020, Lu et al. presented the Bubble Ray [27] technique, which
uses either the angular or Euclidian distance from the ray to the nearest
object to make a selection. This approach, however, can still lead to
unstable selections similar to regular raycasting as the Bubble Ray re-
computes the distances to objects in every frame without incorporating
temporal information. This can easily occur in dense scenes where ob-
jects have similar distances or in scenes where the projection of moving
objects overlaps. Additionally, the maximum distance to the selected
object was not limited such that selections can be involuntary, and the
provided visual feedback can cover significant portions of the view.
In contrast to these prior approaches, only a few works incorporated
temporal information [30, 31, 36], i.e., the user’s behavior, into the
selection method, which can increase the stability of the selection. The
most notable representative in this regard is IntenSelect by de Haan
et al. [12], which the approach presented in this paper is built upon.
Therefore, the following section summarizes the basic principles of this
technique in more detail.

2.1 IntenSelect
IntenSelect by de Haan et al. [12], published in 2005, introduces spatial-
temporal object scoring for volume selections. The idea is to let objects
accumulate a score based on a weighted contribution factor calculated
per frame. In each frame, the object with the highest score will be
picked as the selected object. Therefore, the algorithm works in the
following four stages:

1. Determine objects that are inside of a selection volume.

2. Calculate the score contribution that each object receives in the
current spatial configuration.

3. Update each object’s previous frame score with the current
frame’s score contribution.

4. Pick the highest-ranking object and give visual feedback to the
user.

To calculate the score contribution for an object, first, the object’s mid-
point is projected into the local coordinate system of the selection cone.
This allows calculating a distance-compensated angle between the cen-
ter ray of the cone and the object by using a constant compensation
factor k to prevent exponential growth, which results in

αcomp = tan−1(
dperp

(dpro j)k )

with dperp being the closest distance from the middle point of the object
to the ray, and dpro j being the distance from the cone tip to the object
in z-direction. This results in an overall scoring contribution function
of

scontrib = 1−
acomp

β

with β being the opening angle of the cone. To retain temporal scoring
information, the value is used to influence the overall score of the object,
which gets updated each frame with the following formula:

s(t) = s(t −1) · cs + scontrib(t) · cg

with cs and cg being the stickiness and snappiness constants
respectively. These two constants influence how much of the score is
changed between frames. Stickiness influences how much of the last
frame’s score is kept. Snappiness, on the other hand, how the current
contribution is scaled before adding it to the total score.

The authors empirically tested the approach in a within-subjects
design with eight participants and a 4×2 factorial design to gain first
insights. In particular, the authors compared raycasting, simple volume
selection, and IntenSelect in two different scenes. The first scene was
a static scene in which small spheres had to be selected; the other
scene had 16 spheres that moved through the scene periodically. The
authors used a fixed pre-defined selection order and technique order of
IntenSelect, volume selection, and finally, raycasting. To evaluate the
obtained data, the authors chose to rely on descriptive analysis without
performing inferential statistical tests to draw conclusions beyond the
tested sample. The results indicated that volume selection was the
fastest in the static setting, closely followed by IntenSelect and then
raycasting. In the dynamic scene, however, IntenSelect resulted in the
best selection time, followed by volume select and raycasting.

2.2 Discussion
IntenSelect behaves quite similarly to a standard raycasting approach.
The user directly points in the direction of the object to be selected
without any further necessary input but still gets significant support for
selection. We, therefore, think it has the potential to be easily learnable
while still providing significant benefits to the user. Additionally, it
does not need any particular modifications of the scene or introduce
visual change in the scene, i.e., through scaling, while using the in-
teraction technique. This is especially important when the selection
technique should also be applicable to tasks that do not allow chang-
ing the properties of the scene, i.e., for immersive visualization tasks.



However, in both the original [12] and a follow-up publication [11], the
authors of IntenSelect mentioned several limitations of their approach
and evaluation procedure, which particularly motivated us to carry out
further investigations that we present in this paper.

First, the informal user study conducted by the authors only led
to preliminary insights, and a formal and more rigorous user study
may provide different outcomes and more detailed findings. Second,
the system was only tested with a room-mounted display, namely a
projection-based VR tabletop with an electromagnetically tracked sty-
lus. As tracking technology steadily improved over the years, techno-
logical advances might lead to different results with regard to selection
performance. Third, the evaluated scoring function is limited to point-
like objects that are all weighted with the identical scoring function
without options for individual customization.

Several recent comparative studies of IntenSelect [27, 40], however,
showed further promising results, especially in dynamic scenes, but
they also reiterated inherent limitations of the approach, e.g., in highly
cluttered scenes [41]. Due to a number of factors, we, therefore, re-
visited the original IntenSelect technique to discuss shortcomings and
propose improvements to overcome them. Additionally, to technical
improvements, we present the results of a 42-participant formal user
study that provides insights into the original IntenSelect technique and
our improved version.

3 INTENSELECT+
After an initial analysis of the IntenSelect technique and early experi-
mentation, we decided on three primary aspects that offer opportunities
for improvement. Based on these aspects, we present an enhanced
version called IntenSelect+ that is based on three core objectives:

1. Simplify the scoring function such that the adjustment of parame-
ters becomes easier with predictable limits.

2. Allow objects to have comparable but independent per-object
parameters for flexible scene control.

3. Extend the technique to allow for the selection of complex shapes.
We first discuss changes to the scoring function to address points 1 and
2 in Section 3.1. Afterward, we describe how the extended algorithm
can be applied to more complex objects in Section 3.2.

3.1 Scoring Function
3.1.1 Limitations of IntenSelect’s Scoring
One of the complexities when working with IntenSelect is the fine-
tuning of the scoring behavior. Even though the score function s(t)
only has two direct parameters, namely cg and cs, hereafter defined
as the tuple (cg,cs), the influence of and dependence between the two
parameters is complex. This is primarily due to the recursive definition
of the scoring algorithm, which results in a higher-order function where
both parameters influence the overall score. This behavior is observable
in Figure 2 (left); The object score can be observed for three different
parameterizations when the object is fully hovered (scontrib(t) = 1 for
frame 0 to 30 and completely out of focus for frame 30 to 60. Let
us consider the green curve as the baseline with (0.9,0.8). The red
curve shows an adjustment of the stickiness parameter to cs = 0.85
while keeping cg constant. Even though the intention for such an
adjustment would be to affect the score’s decaying properties, one can
observe that the shape of the growth phase is also affected by this
change. Analogously, it can be seen in the blue curve that keeping cs
constant and setting cg = 0.5 also influences the shape of the object’s
decay phase. This interdependence makes fine-tuning the stickiness
and snappiness parameters of objects challenging.

Furthermore, as also visible in Figure 2, the complex interdepen-
dence of cs and cg also leads to varying maximum values of the scoring
function, which is especially complex and limiting in situations where
per-object parametrization is needed. While the function is bound, the
limit and temporal behavior depend on the concrete values of cs and
cg. Imagine a scenario in which two objects O1 and O2 have different
parameters, e.g., cO1 = (0.9,0.95) and cO2 = (0.5,0.95), which means
that only the growth factor should be different between both objects.

Due to the described interdependence, however, both values approach a
different limit ŝi, with ŝO2 < ŝO1 . This can lead to situations as depicted
in Figure 2 (right), where even though O2 is directly on the center ray
while O1 is at some distance, the wrong object is selected. Due to the
different limits of the score, object O1 will always be selected even
though its current contribution scontrib,O1(t) = 0.6 is smaller than the
one of O2 with scontrib,O2(t) = 1.0, thus O2 is virtually unselectable.
Since this interaction effect is only amplified if more objects with
distinct parameters are introduced, the complexity of balancing the
parameterization quickly becomes infeasible.

Fig. 2: IntenSelect’s original scoring function with varying stickiness and
snappiness parameters. Left: Changing one parameter directly influ-
ences the overall behavior. Right: Different per-object parameters can
lead to one object having a lower score albeit having more contribution.

3.1.2 Enhanced Scoring Function of IntenSelect+
Based on the described limitations, we revised the scoring function with
two goals: (i) simplify the parameter-dependent behavior of objects, (ii)
establish a common upper limit to make scores of objects with different
parameters comparable.

To achieve goal (i), we first split the scoring function into two cases:
One case that controls the score’s growth and one case that controls
decay. For this, we use the parameters cg for the growth-rate and cd
for the decay-rate. The parameters only influence the behavior of their
respective cases and changing one does not influence the behavior
of the other case. To achieve goal (ii), we decided to let the overall
score always approach scontrib(t). As scontrib(t)’s limits are not object-
specific but global, the overall score s(t) is also globally bound and
thus comparable across objects. Additionally, we sought a formulation
that is stable against small variations in the score contribution while
emphasizing large and enduring change. We achieve this by using an
interpolated difference between the current score s(t) and scontrib(t)
that weighs how much the score should be changed:

sδ interp = (x · s(t −1)+(1− x) · scontrib(t))− s(t −1) (1)

with x ∈ [0,1) being the interpolation factor. The interpolation factor
x can be used to be more sensitive to the current contribution or the
existing score. We permanently set x= .5 in our current implementation
to weigh past and current scores the same. In each frame, the total
score s(t) of an object can then be calculated as:

s(t) =

{
s(t −1)+ sδ interp ·∆t · cg, if s(t −1)≤ scontrib(t).
s(t −1)+ sδ interp ·∆t · cd , if s(t −1)> scontrib(t).

(2)

with ∆t being the frame deltatime that enables framerate-independent
scoring, which was not possible with the original scoring function.
The first case is used when the score should rise; therefore, it is only
dependent on cg. Respectively, the second case is only dependent on
cd and is used if the score should be lowered. Assuming scontrib(t)
stays constant as well as 1

1−x ·∆t · cd < 1 and 1
1−x ·∆t · cg < 1, the

difference gets smaller over time; thus, s(t) will converge to scontrib(t)
if cg,cd ∈ (0, 1−x

∆t
). As scontrib(t) ∈ [0,1], it therefore follows that

s(t) ∈ (0,1). Hint: scontrib(t) equals 0 if the object is outside the
selection cone and increases to 1 when the middle ray is on the object
(c.f. 3.2.1).



While the new formulation still has the same number of parameters
as the orignal technique, tuning the behavior is simplified as they
are independent from each other. This is in contrast to the original
implementation, where changing one parameter would influence both
stickiness and snappiness. Additionally, the new formula leads to a
consistent positive correlation for both cd and cg, meaning that a higher
value means that the score decays or grows faster. In the original
formula, cs meant how much of the old score is retained, which led to a
negative correlation. Overall, we believe that this leads to a simplified
process of finding the correct parameters, therefore addressing goal (ii).

This results in a flexible scoring function that is easier to parame-
terize and makes score comparisons between objects sensible even if
distinctive per-object parameters of cg and cd are used.

3.2 Selection Primitives
3.2.1 Limitations of IntenSelect’s Selectable Objects
The second major motivation for IntenSelect+ was enabling the selec-
tion of more complex shapes. This is especially important when the use
case is not restricted to small sphere-like objects and, therefore, con-
tains objects with larger spatial extents. In particular, objects that have
small cross-sections depending on the view or in certain dimensions
can be hard to select without additional help. Prominent examples in
this regard include lines since they are not adequately represented by a
single point.

The authors of the original IntenSelect method suggest three different
methods to deal with larger objects [11], namely, using the midpoint,
using a custom-defined point, and using the last point where a direct ray
intersection occurred. However, the first two do not fix the limitation
mentioned above, since finding a single point that is representative of
a whole object and is reachable at all times is hard to solve in various
cases. The third approach has the inherent restriction that only the last
point of intersection will be considered as the interaction point. Thus,
the user cannot make use of IntenSelect before the first intersection
occurs. Additionally, the computed distance to the object is only correct
if the vector representing the shortest distance from the last intersection
point to the central axis of the selection cone is perpendicular. At worst,
the distance is significantly overestimated in cases where the ray is
close to the object but far away from the last intersection point. Lastly,
situations where the user approaches the object from a different side,
e.g., the other side of the object, can lead to abrupt changes in the score
and selected objects.

3.2.2 Additionally Selectable Objects with IntenSelect+
To go beyond the restriction of objects to a single point, we suggest
representing objects by one or multiple geometric primitives for which
the computation of their distance to the selection ray can be performed
at low cost. These geometric primitives are introduced as an exact cal-
culation of the distance between a ray and arbritary shapes is infeasable.
To realize this in our implementation, we move all scoring-related func-
tionality into the logic of the object, which means that each object is
responsible for calculating its own score. This approach results in two
significant advantages: First, it allows us to define cd and cg as part of
an object’s property instead of it being a global property of the IntenSe-
lect algorithm. Thus, cd and cg can be additionally dependent on object
properties such as speed, volume, etc. Second, it enables the use of
shape-dependent per-object functions that are used for the computation
of scontrib(t), which leads to more versatility than the reduction to the
object’s center point in the original IntenSelect algorithm.

To identify objects that fall into the selection cone in a given frame,
we use a performant sphere-cast with its main axis along the middle
ray and radius set to the radius at the endpoint of the cone to find
candidate objects. The sphere-cast used in our implementation employs
highly optimized acceleration structures to efficiently query the scene
at low costs. This is only an optimization step to reduce the number
of distances that have to be calculated in the scene and can be omitted.
Candidate objects are then given the cone origin, direction, and cone
angle, which are then used as input parameters to the object’s scoring
function. The algorithm finds the closest point on the geometric primi-
tive representing this object and then calculates the score contribution

Fig. 3: Signed distance function of a cylinder. The function evaluates to
1 inside of the cylinder and 0 on the edge of the primitive.

scontrib(t) based on the shortest Euclidian distance between the cone’s
middle ray and the primitive. Primitives for which this calculation
was implemented will be presented in the following paragraphs. As
the exact formulas are basic ray-to-primitive calculations we kindly
refer the reader to literature [13] and our code. scontrib(t), therefore,
essentially behaves like a signed distance function with a value between
0 and 1 (c.f. Figure 3). The function evaluates to 1 inside of the object,
as well as on its surface, and then decreases to zero 0 at the edge of
the selection cone. The exact distance at which the SDF evaluates to
zero is defined by the cone angle and compensation factor k, which
shapes the cone analogously to the original technique. If an object is
represented by more than one primitive, the highest individual score
will be returned as a representative score for the object.

In our current implementation, we provide exact scoring functions
for points, lines, surfaces, and volumes, which are motivated on a
conceptual level in the following.

Points We implemented two kinds of point functions: simple points
and multipoints. Simple point handles are analogous to the original
implementation in that they represent a single 3D position on an object.
Multipoints, on the other hand, are groups of points that define locations
on objects, where each point gets an individual score, but only the
highest subscore is reported as the object’s score. This allows to define
multiple handles per object without overrepresenting the object in the
selection algorithm.

Lines/Surfaces Lines represent 1D primitives that are useful to allow
selection on objects that are still thin enough that they are still an
adequate approximation, e.g., thin cylindrical objects. For surfaces,
we currently provide implementations for disks and rectangles. Even
though these primitives represent surfaces, they can still be used to
approximate 3D objects. While using this approximation decreases
the accuracy of the object representation for selection, they generally
reduce the complexity of the score calculation as calculations become
simpler.

Volumes For large objects, however, the approximation becomes no-
ticeable and limiting; therefore, the object can also be represented via a
volume primitive. In our implementation, we currently provide scoring
functions for spheres, cubes, and cylinders. For 3D objects, we allow
backface culling where applicable to reduce computational demand.

Compound Shapes Our implementation allows the grouping of dif-
ferent primitives into a compound. This enables the approximation of
various shapes due to the combination of approximate objects. Analo-
gously to the multipoints, only the largest subscore will be used as the
object score, effectively behaving like a union operation.

For 2D and 3D objects, the user can additionally decide to enable
IntenSelect+ for the outline of the primitive, thus allowing us to also
realize shapes like circles or wireframe boxes to create more complex
representations.

The definition of IntenSelect+ allows the user to easily replicate
IntenSelect behavior by only using single points and raycasting by
setting both cg and cd sufficiently high and reducing the cone to a ray
via the opening angle.



Fig. 4: Scene in which users were asked to select objects in our user study. In each tile, all elements of the respective object configuration category
are highlighted in orange. In the actual study, only one element that had to be selected was highlighted at a time. Overall, all of the highlighted
elements had to be selected, resulting in 50 selections per technique. This depiction was slightly altered for anonymization.

4 EMPIRICAL EVALUATION OF INTENSELECT+
We conducted a formal user study with two independent variables to
quantify the benefits and drawbacks of using IntenSelect+ on different
object configurations. The first independent variable was Selection
Technique, for which we decided to compare IntenSelect+ (IS+) to the
baselines given by the unaltered version of IntenSelect (IS) as well as
conventional raycasting (RC). The second independent variable was
Object Configuration, for which we decided to compare technique
usage with five types identified by prior work as well as our experience.
These included the three challenging configurations highlighted by
Steed [36] of objects that are close to other objects (CT), partially
occluded objects (OC), and small objects in front of other large objects
(SL), which we complemented with isolated stationary objects as a
baseline (ST) as well as moving objects (MV). The details of our study
are presented in the following.

4.1 Apparatus
The study was performed in our virtual reality lab, where participants
performed the experiment in a stationary standing position with a head-
mounted display. For this, an HTC Vive Pro 2 with respective HTC Vive
controllers was used. The HMD ran with a resolution of 4896 by 2448
pixels and a constant refresh rate of 120 Hz such that reprojection never
occurred. The positions and rotations of the HMD and controllers were
tracked throughout the experiment by one frontal-facing Lighthouse
2.0 base station. The application was run on a Windows desktop PC
with an Intel Core i9-10900X processor, an NVIDIA Geforce RTX
3090 graphics card, and 32GB of DDR4 RAM.

4.2 Participants
The study was done by 42 participants, of which 21 identified as male,
18 as female, and three as diverse. The age of the participants ranged
from 19 to 46 (M = 25.95, SD = 5.486). Participation in the study
required normal or corrected-to-normal vision and fluent English skills.

Recruitment was done locally at the university campus through various
communication channels. In addition to age and gender, participants
self-reported their proficiency with virtual reality and gaming. For
VR experience, 2 participants stated they have no experience, while
14, 15, and 11 participants rated themselves as beginner (used a few
times before), advanced (used several times before), and expert (regular
usage), respectively. For game experience, 1 participant stated to have
no experience, while 12, 6, and 23 participants rated themselves as
beginner, advanced, and expert users, respectively. All participants
successfully completed the full experiment, leading to data points for
N = 42 participants for statistical analysis.

4.3 Task

Our experimental task required participants to select a range of different
objects in a virtual environment consisting of a low-poly landscape
with mountains, hills, trees, foliage, and a river.

To provide suitable targets for the selection task, a bridge-like struc-
ture with different geometric primitives was placed into the virtual
landscape. The user’s task was to select elements in the bridge that
were progressively highlighted by a distinctive red color. Users were
instructed to select only the indicated element and prioritize correctness
over speed while still trying to select them as fast as possible with the
respective technique. The selection was, however, not restricted to the
indicated elements such that false selections could occur. Additionally,
visual and acoustical signaling was used to indicate the element that had
to be selected next only when the new element became active. Once a
selection was made, the indicated element was reset to the base color.

The selection was performed by indicating the desired element with
the currently used technique and then pressing the trigger button, which
started a timer of 500ms, during which the selection should be main-
tained. This dwell time was introduced to reduce the number of erro-
neous selections by giving the user the chance to abort by releasing
the trigger in case the wrong element was selected. The elapsed time



Fig. 5: Tutorial scene used in our study, featuring an overview of element
colors (left) and example objects for practicing (right).

was constantly visible to the user via a circular progress bar next to the
selected point.

Per selection, the user had a maximum of 15s to complete the selec-
tion. This was introduced to prevent overwhelming the user in case of
complex selections and additionally to force them to make selections
and not take too much time. In case of timeouts, i.e., no successful
selection within the time limit, we chose to count the selection as a
false selection. After each selection, a 2s inter-repetition delay was
used before the new element was indicated to let the user refocus on
the task and give the opportunity to mentally conclude the previous se-
lection. The end of each repetition, either through successful or wrong
selection or timeout, was indicated by the same acoustical signal to not
indicate the correctness of the selection. The overall progress for each
selection technique was communicated via a billboard embedded in the
environment.

For each of the above-introduced object configurations, we selected
ten representative objects in the scene such that each of them fell into
one and only one of the presented categories. As a result, users had to se-
lect a total of 50 different objects in the scene. While these objects were
the same for all three tested selection techniques, their order of appear-
ance differed to minimize order effects during the repetitions. However,
we ensured a balanced presentation of the five object configurations
using a balanced Latin Square design to prevent an overrepresentation
of a particular object configuration in a particular phase of the study.
For each technique, a unique permutation of the Latin Square was used.
Figure 4 shows the scene with each object configuration highlighted
in the scene respectively. For our study, we empirically determined
parameters to produce similar temporal behavior. For IntenSelect, we
chose cs = .87 and cg = .13. For IntenSelect+, we chose cd = 10,
cg = 15. Both used k = 0.8 for all objects.

4.4 Procedure
Users were welcomed and signed an informed consent outlining the
collection and usage of the data that was recorded in the study. Users
then drew a random ID that was used for pseudonymization of the
results and asked to fill out a questionnaire regarding their demographic
information. Users were then shown the VR hardware to be used,
and the equipment was adjusted to fit comfortably. Users were directly
shown a tutorial environment to let them familiarize themselves with the
hardware. When ready, participants pressed a button that started a video
playback in the virtual environment describing the study setup and the
task to be performed. Before continuing with the study task, participants
were given the opportunity to ask questions to the experimenter.

After this general introduction phase, the following procedure was
repeated for all three techniques. First, the user was shown an introduc-
tion video describing the technique to be used and had the opportunity
to try it out in the reduced tutorial environment without limitations on
the number of trials or time (c.f. Figure 5). Users were able to continue
to the recorded task when they felt ready after at least five successful
selections via a button press on their controller.

The scene then changed to the bridge environment, where the user
could again indicate readiness via a button press to start the task se-
quence. After completing the required 50 selections, the user was asked
to take the HMD off and fill in a questionnaire, which consisted of
a single-value discomfort score [34], the Raw TLX as a simplified
version of the NASA-TLX with equal subscale weighting [18, 19], and
the user experience questionnaire (UEQ) [23].

After all three techniques were presented and the respective ques-
tionnaires were filled out, a post-study questionnaire was provided to
the participants where they were asked to rank their favorite, second
favorite, and least favorite techniques and provide any comments on
the study. The whole procedure took between 45 and 60 minutes per
participant.

4.5 Hypotheses

Given our intentions of developing an improved version of IntenSe-
lect, we hypothesized that (H1) the selection performance (i.e., mean
selection time and error) is lowest for IS+, followed by IS in sec-
ond and RC in third place. We also hypothesized that these overall
performance benefits manifest themselves within each type of object
configuration by stating that (H2) IS+ performs best within all tested
object configruations. Regarding interaction effects between selection
technique and object configuration, we expected that (H3) RC would
perform worst for the CT object configuration as the lever effect
of raycasting can easily lead to the selection of neighboring objects
in close proximity. Furthermore, we expected that (H4) IS performs
worst for the OC object configuration as the midpoint of larger ob-
jects lies behind other objects in this case. Therefore, it might be harder
and more confusing for the user to select these objects since they have
to point directly toward the occluding object. We also hypothesized
that (H5) IS requires more hand rotations than the other techniques
as the user has to rotate towards the midpoint of each object instead of
selecting the point closest to the ray.

With respect to the questionnaire data, we expected that (H6) IS+
requires the lowest task load based on its reduced sensitivity for jitter
and less required anticipation compared to IS. We also hypothesized that
these positive effects, as well as the overall improvements introduced
by IS+, are reflected on the User Experience Questionnaire by stating
that (H7) IS+ performs better than the other two techniques on all
six subscales of user experience.

We did not hypothesize differences between techniques and cate-
gories regarding user well-being as measured by the discomfort score,
which is due to the identical amount of visual flow introduced by each
condition. Based on our preference ranking, however, we expected that
(H8) IS+ is generally preferred over the other two techniques.

5 RESULTS

Guided by our hypotheses, we analyzed the data of our user study with
IBM SPSS Statistics 28. For hypothesized overall differences between
techniques, we conducted one-way repeated-measures ANOVAs to
test for statistically significant effects. For hypotheses involving both
technique and object configuration, 3×5 factorial repeated-measures
ANOVAs were conducted instead to identify main and interaction
effects. To prevent an overreliance on p-values, we computed the effect
sizes η2

p for each ANOVA and applied the threshold values of .01, .06,
and .14 suggested by Cohen [10, pp. 285–287] to categorize small,
medium, and large effects, respectively. Variables without a hypothesis
were analyzed purely descriptively.

Two key requirements for the validity of repeated-measures
ANOVAs are a normal sampling distribution and equal variances of the
differences between conditions, also referred to as sphericity. While
our sample size of N = 42 is sufficiently large to carefully assume a
normal sampling distribution based on the central limit theorem [14, pp.
170–172], we tested the assumption of sphericity using Mauchly’s tests
and reported Greenhouse-Geisser corrected values and the correction
factor ε when it was violated.

For more detailed insights than the overall analyses of ANOVAs pro-
vide, we conducted follow-up paired-sample t-tests to identify pairwise
differences. In these cases, we applied Bonferroni corrections of the
p-values to counteract the risk of inflated error rates. We also computed
the effect size Cohen’s d with the threshold values of 0.2, 0.5, and 0.8
for the above-mentioned effect categories [10, pp. 24–26]. The data
files of our user study are provided as supplemental material to this
publication for additional clarity.
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Fig. 6: Graphical depiction of interaction effects between the two independent variables Selection Technique and Object Configuration regarding
mean selection time (left), mean selection error (center), and mean rotation angle (right). Each plot shows the arithmetic means of the three
techniques split by object configuration, with error bars representing the 95% confidence intervals of each mean. The colors represent Raycasting
(RC), IntenSelect (IS), and IntenSelect+ (IS+). The tested object configurations were isolated stationary objects (ST), objects that are close to
other objects (CT), partially occluded objects (OC), small objects in front of large objects (SL), and moving objects (MV).

5.1 Inferential Tests on Logging Data
Boxplots of the measured selection times, error rates, and accumu-
lated controller rotations are given in Figure 8 and supplemented by
inferential analyses in the following:

Selection Time The assumption of sphericity was violated for the
main effect of technique (ε = .777), the main effect of the object con-
figuration (ε = .728), and the interaction effect (ε = .498). There
was a significant main effect of technique (F(1.555,63.741) = 66.434,
p < .001, η2

p = .618), a significant main effect of the object config-
uration (F(2.913,119.439) = 96.765, p < .001, η2

p = .702), and a
significant interaction effect (F(3.983,163.300) = 100.026, p < .001,
η2

p = .709), all with large effect sizes. Post-hoc tests revealed signifi-
cant differences between all pairs of techniques (all p < .001), with a
medium effect between RC and IS (d = 0.713) and large effects for the
other comparisons (both d > 1.4). The interactions between technique
and object configuration are depicted in Figure 6 (left).

Selection Errors The assumption of sphericity was violated for the
main effect of the object configuration (ε = .811) and the interaction
effect (ε = .590). There was a significant main effect of technique
(F(2,82) = 18.112, p < 0.001, η2

p = 0.306), a significant main effect
of the object configuration (F(3.246,133.082) = 14.804, p < 0.001,
η2

p = 0.265), and a significant interaction effect (F(4.722,193.616) =
16.613, p < 0.001, η2

p = 0.288), all with large effect sizes. Post-hoc
tests revealed significant differences between all pairs of techniques (all
p < .02), with a small effect between RC and IS (d = 0.471), a medium
effect between IS and IS+ (d = 0.523), and a large effect between RC
and IS+ (d = 0.836). The interactions between technique and object
configuration are depicted in Figure 6 (center).

Accumulated Controller Rotations The assumption of sphericity
was violated for the main effect of object configuration (ε = .679)
and the interaction effect (ε = .561). There was a significant main
effect of technique (F(2,82) = 5.671, p = .005, η2

p = .122), a signif-
icant main effect of the object configuration (F(2.714,111.293) =
68.735, p < .001, η2

p = .626), and a significant interaction effect
(F(4.491,184.127) = 13.009, p < .001, η2

p = .241), all with large
effect sizes. Post-hoc tests revealed significant differences between
RC and IS (p = .045, d = 0.391) as well as IS and IS+ (p = .001,
d = 0.584), with small and medium effect sizes, respectively. The com-
parison between RC and IS+ was not significant (p= 1.000, d = 0.029).
The interactions between technique and object configuration are de-
picted in Figure 6 (right).

5.2 Inferential Tests on Questionnaire Data
Task Load The task load scores were significantly affected by tech-
nique with a large effect size, F(2,82) = 45.882, p < .001, η2

p = .528.
Post-hoc tests revealed significant differences between all pairs of
techniques (all p < .001), with a medium effect between IS and

Overall Test Post-Hoc Tests
F p η2

p d( RC, IS) d( RC, IS+) d( IS, IS+)
Attractiveness 63.086 <.001 .606* 0.813* 1.957* 0.835*

Perspicuity 14.087 <.001 .256* 0.571* 0.180 0.722*
Efficiency 42.662 <.001 .510* 0.629* 1.422* 0.835*

Dependability 15.092 <.001 .269* 0.028 0.801* 0.692*
Stimulation 46.055 <.001 .529* 1.018* 1.394* 0.449*

Novelty 75.745 <.001 .649* 1.509* 1.538* 0.050
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Fig. 7: Top: Results of the inferential tests applied on the six subscales of
the User Experience Questionnaire (UEQ), in which statically significant
effect sizes are highlighted in bold and marked with an asterisk. Bottom:
Boxplots illustrating the distribution of UEQ subscale scores. Each
individual boxplot is complemented by a circle indicating the arithmetic
mean as well as the 95% confidence interval of the mean. The colors
represent Raycasting (RC), IntenSelect (IS), and IntenSelect+ (IS+).

IS+ (d = 0.692) and large effects for the comparison of RC and IS
(d = 0.825) and the comparison of RC and IS+ (d = 1.426).

User Experience The results of the inferential tests applied on the
six subscales of the User Experience Questionnaire are given in Fig-
ure 7. Overall, all subscales showed significant differences between
techniques with large effect sizes. Significant differences were also
found for most of the pairwise follow-up comparisons, with the ex-
ceptions of perspicuity for the comparison of RC and IS+ (p = .753),
dependability for the comparison of RC and IS (p= 1.000), and novelty
for the comparison of IS and IS+ (p = 1.000).

5.3 Further Descriptive Analyses

Discomfort The discomfort scores ranged from 0 to 9 for RC (M =
2.26, SD = 2.359), from 0 to 9 for IS (M = 1.55, SD = 1.978), and
from 0 to 8 for IS+ (M = 1.45, SD = 1.811). The median score was 2
for RC and 1 for the other two techniques.

Technique Preference IS+ was the overall most favored technique,
with 35 and 7 participants ranking it first and second, respectively. In
contrast, RC was the overall least favored technique, with 10 and 32
participants ranking it second and third, respectively. The preference
rankings of IS were situated between these extremes, with 7, 25, and
10 participants ranking it first, second, and third, respectively.



5.4 Interpretation and Discussion
Overall, our results paint the unanimous picture that IS+ offered several
advantages over IS, which in turn was beneficial over RC, as expected
based on evaluations in prior work.

5.4.1 Objective Measurements
It can be observed that the mean selection time with regard to the
selection technique is the fastest with the IS+ technique. In more detail,
we observed that IS+ < IS < RC with regard to the mean selection
time. Thus, we can confirm H1 based on the statistical tests reported
in Section 5.1, which show that the differences in the selection times
are significant with effect sizes ranging from medium to large effects.
While the overall improvement in selection time is a relevant result, it
is especially interesting to look at specific object configurations to gain
further insights into the strengths and weaknesses of each technique.

Taking the selection time and error rate into consideration for all
object configurations, we can observe that IS+ performs best in all
categories except for SL selections. The error rate of IS+ is always
better or at least comparable to the other two techniques. While the
selection time achieved for ST, CT, OC, and MV is the best with
the IS+ technique, it is different for SL selections. In this case, IS+
performs the worst of all selection techniques, with RC in the middle
and IS performing best. Thus, we reject H2 as we identified a weak
point of IS+ in SL selections, requiring further improvements. The
problem in the interaction between IS+ and SL is that the small object
is completely engulfed in the large when projecting the objects onto
the cone intersection. This means that the larger object will receive the
maximum score contribution if the user is close to the small object but
also if the user is directly on it. Therefore, the smaller object can only
reach an equal score if and only if the user directly hits the small object.
Consequently, the advantages of IS+ are completely counteracted for
the small object, as seen in the results. The same problem occurs for
IS only if both midpoints are lying exactly on the middle ray. There
are multiple possible solutions for this issue. One option would be
to prevent score increases of other objects if an object is directly hit,
and another option is to make use of the per-object-scoring to give the
smaller object more aggressive parameters to gain selection faster and
stick around longer, i.e., increase cg and decrease cd . However, in the
case of per-object scoring, it would be difficult to find a solution that is
generally applicable as occlusion problems are always dependent on
the user’s exact viewpoint.

The biggest differences in selection performance can be observed in
CT-type object configurations, with RC for CT selections resulting in
the slowest selection times overall. We could observe in our study that
users had difficulties selecting the correct object, as small deviations
in the controller orientation resulted in the indication of surrounding
objects that were closeby. Thus, user slowed down their selection to
make sure that the correct object was selected before completing the
selection. Figure 6 (center) shows that even though selection times
were slower compared to other techniques, it still resulted in the lowest
correctness score for any combination. We observe significant differ-
ences for both selection time and selection error with small to large
effect sizes for all pairwise comparisons. This confirms our hypothesis
H3 that the selection performance for RC in CT type selections is the
worst among all selections.

For OC-type selections, it can be observed that the selection time
is the worst for the IS technique, while the best time can be achieved
with IS+ with the time of RC situated in between. Combined with the
increased error rate for IS when doing OC selections, we can see that
the performance of IS is the worst in this object configuration. Based
on significant pairwise differences with small to large effects for all
combinations, we confirm hypothesis H4. In the study, we observed
that users found it very hard to estimate where the middle point of the
object lies. In the OC case, the middle point was occluded to varying
degrees, i.e., the midpoint was closer or further away from the visible
sections. This led to the behavior that users generally tried to follow
the shape of the object and search for the object’s midpoint instead of
directly moving to it. The disadvantage was observed further in the
free comment section that users could use at the end of the study. 21 of

Fig. 8: Boxplots showing selection time, error rate, controller rotation, and
Raw TLX values for the techniques Raycasting (RC), IntenSelect (IS),
and IntenSelect+ (IS+). Next to each boxplot, a diamond represents
the arithmetic mean with 95% confidence intervals.

42 participants explicitly commented that this was a challenging object
configuration and needed a lot of concentration.

Considering the amount of controller rotation needed per selection,
it can be seen in Figure 6 (right) that IS requires more hand rotation
compared to RC and IS+. This is due to the limitation of IS that the
user has to always rotate to the midpoint of an object even if it has large
dimensions in one or more axes. When considering a large line, for
example, the user can select the object as soon as the selection line or
volume reaches the border of the object, and the user can stop rotating.
This is especially pronounced in the OC and MV object configurations,
as the user will stop the rotation when selecting as soon as possible and
does not have to reach or track the midpoint. The statistical analysis
supports this assumption as there are significant differences between
RC and IS as well as IS and IS+ with small and medium effect sizes,
while there is no difference between RC and IS+. This indicates that
in terms of the required amount of controller rotations, RC and IS+
behave similarly. We thus accept H5 as IS requires more hand rotations
compared to both other techniques.

5.4.2 Subjective Measurements

When taking subjective measures into account, it can be observed that
the Raw TLX score is the highest for RC, second highest for IS, and the
lowest for IS+. Statistical analysis revealed a significant difference with
an overall large effect size for the task load scores with a medium effect
between IS and IS+ as well as large effects for IS and IS+ compared
to RC. This confirms H6 that IS+ results in the lowest task load. In
more detail, it can be seen that when considering all techniques, RC
generates the highest task load while IS is situated between RC and
IS+.

The statistical analysis of the UEQ revealed that all six subscales
show significant differences with regard to the rated techniques with
large effect sizes. For further discussion, we split the UEQ into three
semantic units as described by Schrepp et al. [35]. Pragmatic qualities
represent goal-oriented measurements that primarily evaluate effec-
tiveness. Hedonic qualities, on the other hand, represent aspects that
are not directly goal-oriented. Both categories, however, influence the
overall attractiveness that the user assigns to a product, allowing one to
rate one system as more attractive than another system if they are as
effective but one is more enjoyable to use.

Pragmatic Qualities Pragmatic qualities in the context of the
UEQ are perspicuity, efficiency, and dependability. For perspicuity, we
can observe significant differences between RC and IS as well as IS and
IS+, with medium effect sizes, while there is no significant difference
between RC and IS. In the overall order in terms of perspicuity, IS+
has the best score, followed by RC and IS. As perspicuity describes
how easy it is to learn or get familiar with the system, no significant
difference between RC and IS+ could hint that users felt a similar level
of complexity and learning for both techniques. This is additionally
supported by the positive absolute values for RC and IS+, which give an
indication that users are able to learn the system well. The significant
differences to IS, on the other hand, indicate that users had a harder
time getting familiar with this condition. We speculate that due to the



technique, the means of interaction with the object slightly changes, es-
pecially in cases like OC object configurations where pointing through
other objects to select an object is rather unintuitive. Therefore, IS
might require a larger amount of familiarization compared to other
techniques.

Once learned, however, users seem to find IS more efficient than
RC, while IS+ gets the best scoring of all three techniques, which is
represented by the UEQ’s efficiency subscale with a medium effect
size when comparing RC to IS and large effect sizes between RC and
IS+ as well as IS and IS+. This indicates that the support provided by
IS and IS+, compared to the straightforward input via RC, helps the
user in completing the task faster and more precisely. Furthermore, it
shows that the user feels that their efficiency is further increased when
comparing IS and IS+.

This is also reflected in the dependability subscale of the UEQ,
which represents the degree of control the user feels when using the
system. We can observe the same ordering of RC < IS < IS+. No
statistically significant difference between RC and IS could be observed,
while the pairwise comparison of RS and IS+, as well as IS and IS+,
shows significant differences with a medium and large effect size,
respectively. We suspect that even though the similar results between
RC and IS in terms of dependability have different origins, i.e., RC is
more susceptible to noise while IS does not follow the user’s intention
as closely, the respective shortcomings have a comparable influence
on dependability. The significant differences when comparing IS+
to both other techniques indicate that the extensions made for IS+
provide users with an interaction technique that feels more dependable
when interacting with the virtual environment. Compared to RC, the
technique is less susceptible to noise, which can increase the feeling
of control and security, while compared to IS, the incorporation of the
whole object shape for the scoring makes interactions more predictable
and thus increases dependability.

Hedonic Qualities When looking at the hedonic qualities of
novelty and stimulation, the UEQ results show the same ordering
of RC < IS < IS+ in both categories. RC and IS, as well as RC
and IS+, show significant pairwise differences with large effect
sizes in both categories, indicating that compared to a standard
raycasting technique, both techniques are perceived as more novel
and more stimulating. This, however, is not surprising as RC is a
well-known and straightforward technique and does not provide any
interesting modulation to the user’s input and, therefore, provides a
rather low baseline. When comparing IS and IS+, only a small yet
significant effect size can be observed with regard to stimulation, while
no significant difference can be observed for novelty. This is not
surprising, however, as IntenSelect+ aimed at alleviating shortcomings
of IS and not reinventing the technique.

As the motivation was to improve the overall usability of IntenSelect,
both categories are important to consider, as gains in objective measure-
ments only do not automatically make the enhancements worthwhile.
As stated by Argelaguet et al. in their 2013 survey paper, "In the context
of the real usage of 3D interfaces, the subjective impressions of the
users about an interaction technique can play a larger role than merely
speed" [3]. It can be observed that both pragmatic as well as hedonic
qualities show the pattern of RC < IS < IS+. This leads to a large
effect size that can be observed between all pairwise comparisons of
the techniques, with IS+ being rated as the most attractive, followed
by IS and RC. Overall, we can observe that for all UEQ subscales, IS+
has the best score, leading us to confirm H7.

5.4.3 Generalizability
While the results clearly show that IS+ performs best in the presented
environment, the evaluation of IntenSelect+ in other contexts is a key
component of future work. One important aspect is that only three
different techniques were compared in the study. The two comparative
techniques, namely raycasting and the standard IntenSelect technique,
were chosen to compare IntenSelect+ against the de-facto standard
technique in most VR applications and against the original approach
to investigate if the proposed improvements have a profound impact.

During the study design, we considered other techniques to compare
against, such as Bubble Ray [27], 3D Bubble Cursor [38], Depth Ray
[16,38], Alpha Cursor [45]; however, due to the large corpus of relevant
techniques, we decided that such comparisons would be out of scope
for this work. Therefore, comparisons to other techniques will be part
of future work, which allows for adequate room for nuanced discussion
between state-of-the-art techniques. Furthermore, we carefully chose
representative object configurations that are in line with literature [36].
However, they do not cover all possible object configurations. For
example, we did not test different distances and restricted selections to
the user’s field of view. Therefore, further investigations are needed to
ensure there are no specific object configurations where IntenSelect+
falls short. Lastly, objects are represented by pre-defined primitives,
which has two potential limitations. Firstly, the primitives must be
chosen by the developer/designer, and secondly, the approximation can
be too loose. While using compound shapes allows developers to build
tighter representations for complex shapes, such as concave objects, it
also increases design effort. Therefore, an automated workflow and
more complex primitives will be subject of future work.

6 CONCLUSION AND FUTURE WORK

While raycasting is a straightforward approach to object selection that
is easy to pick up, IntenSelect was designed to overcome its inherent
limitations in terms of precise object selection. However, the original
realization of IntenSelect was especially suitable for selecting small
spherical objects and showed several limitations, such as the com-
plex and inconsistent scoring behavior. Our IntenSelect+ technique
presented in this paper proposes enhancements to address these short-
comings. In a formal user study with 42 participants, we compared
IntenSelect+ to IntenSelect and raycasting in different spatial object
configurations. Our results confirm a clear hierarchical relation be-
tween techniques, in which IntenSelect+ showed several improvements
over IntenSelect, which in turn was shown beneficial over raycasting.
These benefits manifested in objective measures like time and accuracy
and subjective measures like task load and user experience. Concern-
ing our research question formulated in the introduction, we conclude
that IntenSelect+ is a promising enhancement of the original approach
suitable to achieve precise, fast, and comfortable object selections in a
large variety of use cases. However, a special case that requires further
deliberation for IntenSelect+ is the selection of small objects in front of
larger objects, where our study scenario with identical snappiness and
stickiness parameters for all objects did not yet lead to optimal selection
performance. While our implementation already allows adjusting these
parameters on a per-object level, insights on appropriate value ranges
and their effects are still subject to further investigation.

Future work will start by exploring variations of IntenSelect+ that
are tailored to the needs of specific use cases. Therefore, we aim to
add other useful primitives and more complex scoring functions into
the technique to approximate arbitrary shapes as closely as possible
while maintaining performance, e.g., through the support of k-DOPs.
Further ideas to extend IntenSelect+ also include evaluating the impact
of dynamic object parameterization based on contextual importance.
For example, objects that are likely to receive selections could dynam-
ically increase their snappiness, making their selection in cluttered
environments like graphs easier. Lastly, a formal comparison with
other techniques and more diverse virtual environments would lead
to insights into how IntenSelect+ positions itself among other known
methods. While the results were already convincing compared to ray-
casting and the standard IntenSelect approach, it will be interesting to
see how IntenSelect+ scores overall.

Overall, we believe that the underlying conceptual framework of
IntenSelect+ can significantly reduce the complexity of selection pro-
cesses, helping users perform higher-level tasks more effectively and
efficiently while improving the user experience.
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